Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Hong-Fei Wu ${ }^{\mathrm{a}}$ and Hong-Xing Wang ${ }^{\mathrm{a}, \mathrm{b}_{*}}$

${ }^{\text {a }}$ Department of Chemistry, College of Sciences, Tianjin University, Tianjin 300072, People's Republic of China, and ${ }^{\mathbf{b}}$ State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail:

hongxing_wang@hotmail.com

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.033$
$w R$ factor $=0.076$
Data-to-parameter ratio $=13.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

trans-4-(Ferrocenylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one

The title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}\right)\right]$, a new Schiff base containing a ferrocenyl group, has been characterized structurally. The central $\mathrm{C}-\mathrm{N}=\mathrm{C}-\mathrm{C}$ linkage has a nearplanar geometry, indicating extensive conjugation.

Comment

Some Schiff bases bearing the ferrocenyl group and their complexes are excellent non-linear optical materials and liquid crystals (Colbert et al., 1995) because of their strong electron donors and electron-flow bridges. In the course of our investigation of the coordination of Schiff bases with transition metal salts, we observed that the title compound, (I), coordinates readily with $\mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Cu}^{\mathrm{II}}$ salts as an N, O-bidentate ligand. The crystal structure of (I) is reported here (Fig. 1).

(I)

In (I), all the bond lengths are within normal range (Allen et al., 1987). The N3-C12 bond length [1.277 (3) Å] confirms that it is a $\mathrm{C}=\mathrm{N}$ double bond. The dihedral angle between the five-membered pyrazole ring ($\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 9 / \mathrm{C} 8 / \mathrm{C} 7$) and the plane

Figure 1
The structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.

Received 28 January 2005 Accepted 7 February 2005 Online 26 February 2005
formed by atoms C8/N3/C12/C13 is $28.0(3)^{\circ}$. This deviation may be caused by the steric hindrance between atom O 1 and the H atom attached directly to C 12 . The $\mathrm{C} 8-\mathrm{N} 3-\mathrm{C} 12-\mathrm{C} 13$ torsion angle is $178.56(19)^{\circ}$.

Experimental

A solution of ferrocenylaldehyde ($0.214 \mathrm{~g}, 1 \mathrm{mmol}$) in absolute ethanol (10 ml) was added dropwise to a solution of 4 -amino-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-one ($0.203 \mathrm{~g}, 1 \mathrm{mmol}$) in absolute ethanol $(10 \mathrm{ml})$. The mixture was refluxed and stirred for 2 h and a yellow solid precipitated. The solid was isolated, washed three times with cold absolute ethanol and dried in a vacuum desiccator with anhydrous CaCl_{2} (yield: 81%). A yellow single crystal suitable for X-ray analysis was obtained by slow evaporation of an ethyl acetate solution at room temperature over a period of a month. Analysis calculated for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{FeN}_{3} \mathrm{O}: \mathrm{C} 66.18, \mathrm{H} 5.30, \mathrm{~N} 10.52 \%$; found: C 66.10, H 5.41, N 10.69%.

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}\right)\right.$]
$M_{r}=399.27$
Monoclinic, $P 2_{\mathrm{d}} / n$
$a=7.4749$ (6) А
$b=17.426$ (2) \AA
$c=14.443$ (2) \AA
$\beta=101.087$ (8) ${ }^{\circ}$
$V=1846.1$ (4) \AA^{3}
$Z=4$
Data collection
Siemens $P 4$ diffractometer ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.694, T_{\text {max }}=0.819$
3870 measured reflections
3335 independent reflections
2530 reflections with $I>2 \sigma(I)$

$D_{x}=1.436 \mathrm{Mg} \mathrm{m}^{-3}$

Mo K α radiation
Cell parameters from 34 reflections
$\theta=6.2-14.5^{\circ}$
$\mu=0.83 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Prism, yellow
$0.48 \times 0.32 \times 0.24 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.022 \\
& \theta_{\max }=25.3^{\circ} \\
& h=0 \rightarrow 8 \\
& k=0 \rightarrow 20 \\
& l=-17 \rightarrow 17 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \quad \text { intensity decay: } 5.6 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.076$
$S=1.00$
3335 reflections
247 parameters
H -atom parameters constrained

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0366 P)^{2}\right] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.27 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-0.27 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Extinction correction: SHELXL
Extinction coefficient: 0.0066 (6)

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 7$	$1.232(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.438(3)$
$\mathrm{N} 3-\mathrm{C} 12$	$1.277(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.359(3)$
$\mathrm{N} 3-\mathrm{C} 8$	$1.407(3)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.459(3)$
$\mathrm{C} 12-\mathrm{N} 3-\mathrm{C} 8$	$119.7(2)$	$\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 7$	$129.0(2)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	$131.8(2)$	$\mathrm{N} 3-\mathrm{C} 12-\mathrm{C} 13$	$120.4(2)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 3$	$122.5(2)$		
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 9$	$-9.6(2)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 3$	$-2.0(4)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 9$	$-163.45(19)$	$\mathrm{C} 8-\mathrm{N} 3-\mathrm{C} 12-\mathrm{C} 13$	$178.56(19)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$160.0(2)$	$\mathrm{N} 3-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$26.9(3)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$176.4(3)$		

Figure 2
The crystal packing of (I), viewed along the a axis. H atoms have been omitted.

All H atoms were initially located in a difference Fourier map. All H atoms were then constrained to an ideal geometry, with $\mathrm{C}-\mathrm{H}$ distances of $0.93-0.96 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997b); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

We are indebted to the Natural Science Foudation of Tianjin City, People's Republic of China, for financial support (grant No. 033609011).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Colbert, M. C. B., Hodgson, D., Lewis, J., Raithby, P. R. \& Long, N. J. (1995). Polyhedron, 14, 2759-2766.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

